

ROADEX Research and eLearning Packgage:

Drainage

Timo Saarenketo, PhD Roadscanners

Contents:

- 1. History of Drainage Research in ROADEX project
- 2. Introduction to Drainage eLearning
- 3. Economic Importance of a Well Performing Drainage
- 4. Drainage Demonstration Projects
- 5. Drainage Maintenance Follow Up in Finland
- 6. Conclusions and New Ideas

History of Drainage Research in ROADEX Projects 1998 - 2012

 Benchmarking: Drainage was of the biggest road condition management problems shared by all partners

• Drainage research: Identifying critical drainage sections, modelling drainage and pavement life time

• Development and testing drainage field survey techniques, drainage classification, drainage procurement documents in maintennace contracts

• Implementation: Drainage demonstration projects in partner areas, testing new techniques, drainage maintenace follow up, Drainage eLearning packages

Drainage eLearning Package

Lesson 1
Permanent Deformation

Continue

Roads on Peat

Continue

Lesson 3

Drainage of Roads

To be issued in 2012

Ready by 05/2012

Lesson 4
Environmental Consideratio

1. Introduction, why drainage is important

2. Water in Road Materials and Subgrade Soils

3. Water and Mechanical Properties of Roads

4. Components of Road Drainage Systems

5. Drainage Problems and How to Avoid them

6. Drainage Analysis and Classification

7. Examples of Drainage Deficiences in ROADEX Area

Economic Importance of a Good Drainage System What is Pavement Life Time ?

• rehabilitation measures needs to be taken when more than 10 % of the rutting or roughness values are higher than the trigger value

What is Common for these critical sections?

Critical Parameters in Pavement Life Time Evaluation are Rut and IRI Growth Speed

Rut increase	Initial rut	Life time	rut depth
(mm/year	(mm)	years	max(mm)
0,4	2	45	20
0,5	2	36	20
0,6	2	30	20
0,7	2	25,7	20
0,8	2	22,5	20
0,9	2	20	20
1	2	18	20
1,1	2	16,4	20
1,2	2	15	20
1,3	2	13,8	20
1,4	2	12,8	20
1,5	2	12	20
1,6	2	11,3	20
1,7	2	10,6	20
1,85	2	9,8	20
2	2	9	20

But pavement life time can be also calculated using linear elastic theory

PMS Objekt Pavement Life Time Calculations – Good Drainage

Bound: 80

Unbound base old: 250 mm

Unbound sub base old: 150 mm

Filter course: 220 mm

Structures: total: 700 mm

Subgrade: moraine

Drainage: Ok

Bound: 100

Unbound base old: 250 mm

Unbound sub base old: 150 mm

Filter course: 220 mm

Structures: total: 720 mm

Subgrade: moraine

Drainage: Ok

Bound: 120

Unbound base old: 250 mm

Unbound sub base old: 150 mm

Filter course: 220 mm

Structures: total: 740 mm

Subgrade: moraine

Drainage: Ok

Rut Increase: 0,9 mm/year

Rut Increase: 0,7 mm/year

Rut Increase: 0,4 mm/year

Traffic volume: 500, heavy traffic 5 %

Implementing Accessibility

Drainage and Linear Elastic Behaviour of Pavement Structure

Case: Drainage in Good Condition

Rut increase (mm/year)

PMS Objekt Pavement Life Time Calculations – Poor Drainage

Bound: 80

Unbound base old: 250 mm

Unbound sub-base old: 150 mm

Filter course: 220 mm

Structures: total: 700 mm

Subgrade: moraine Drainage: class 3

Bound: 100

Unbound base old: 250 mm

Unbound sub base old: 150 mm

Filter course: 220 mm

Structures: total: 720 mm

Subgrade: moraine Drainage: class 3

Bound: 120

Unbound base old: 250 mm

Unbound sub-base old: 150 mm

Filter course: 220 mm

Structures: total: 740 mm

Subgrade: moraine Drainage: class 3

Implementing Accessibility

Rut Increase: 1,85 mm/year

Nekv * 2 2 093 336 Compression strain on the 5 046 150 foundation level Vertical compression strains, singular loadmaximum allowed Calculated Compression strain on the 0.002100 0.001219 foundation level

Rut Increase: 1.1 mm/year

Rut Increase: 0.7 mm/year

Traffic volume: 500, heavy traffic 5 %

Drainage and Linear Elastic Behaviour of Pavement Structure

Case: Drainage in Poor Condition

Rut increase (mm/year)

Investment to Better Drainage is Win-Win for Everyone

Rovaniemi area: First year investments: 100 k€ => Potential savings: 250 – 330 k€/year

Further use of savings:

- 50 k€: for drainage maintenance
- 2. 200- 330 k€: for thicker pavements

Drainage, Frost and Rutting: CaseRoad 81

The ROADEX demonstration projects - Drainage

DRAINAGE IMPLEMENTATION PROJECTS

WESTERN ISLES

NORWAY

ICELAND

SISIMIUT, GREENLAND

Drainage

ROADEX Demonstration project:Umeå Södra, Region Norr, Sweden:

- Testing tools to improve drainage analysis in Umeå Södra maintenance area
 - Laser Scanner and GPR; combining road structure and ditch bottom depths
 - Drainage analysis seasonal tests
 - Tools for outlet ditch inventory
 - Thermal camera development

SEASONAL TESTS FOR DRAINAGE ANALYSIS

Drainage analysis in a) spring, b) fall

Results:
Drainage analysis can
be done both in
spring and in fall

Road Doctor Cam Link for Outlet Ditches

Ditch Depths with Laser Scanner and GPR

MITTAUS

Proportion of ditches with acceptable depths

(ditch bottoms are 20cm lower than road structure)

Problems with Shallow Ditch Depths are Reflected also in IRI and Rut Depth Values

Drainage Examples from Norway

Ditch Bottom Level Anaslysis Rd 73 Norway

Ditch Bottom Level Map: E6, section 12

Demonstration project:

Lapland Region, Finland:

- Follow up, how the new drainage policy works in practise in Rovaniemi and Kittilä maintenance contracts
 - Monitoring the condition of special drainage sections
 - How well contractors have done their job,
 - What is the reason for the failures?
 - Has road deteroration rate (rut increase, roughness, pavement distress) really decreased?
 - And if not, what is the reason
 - Problems with Drainage Analysis

Kittilä Follow Up: Rd 80_10, 3000-4000 m

Kittilä Follow Up: Rd 80_10, 7000-8000 m

Condition of Kittilä Special Drainage Maintenance Sections

Increased Rut and IRI and the Reason for that.

Condition of Rovaniemi Special Drainage Maintenance Sections

Increased Rut and IRI and Reason for that.

Ditch depth was not analysed

Rovaniemi follow Up: Rd 934 / 3-4

Special problem: Clogged Private Acces Road Culverts

Special problem: Clogged Private Acces Road Culverts

Special Problem: Private Acces Road Culverts

Special Problem: Private Acces Road Culverts

Problems Caused by Private Acces Road Culverts

Problems Caused by Private Acces Road Culverts

Problems Caused by Private Acces Road Culverts

Special Problem also on Gravel Roads: Private Acces Road Culverts

Formation of Ice Lenses Under Road at the End Point of Flooded Ditch

Special Problems Unstable Ditch Slopes

200

Road 934 section 3, 1740 right

The Role of Private Access Road Drainage Condition and Pavement Life Time

Section 3

Section 4

Special Drainage Problem – Sheet Ice

Special Drainage Problem – Ditches too High

Special Drainage Problem – Ditches too High

	Section 3		Section 4	
	Right Ditch (%)	Left Ditch (%)	Right Ditch (%)	Left Ditch (%)
Ditch bottom level is > 0,3m deeper				
than bottom level of road structure	46,9	45,9	46,9	58,7
Ditch bottom level is 0-0,3 m deeper				
than bottom level of road structure	21,1	29,9	30,6	23,7
Ditch bottom level is > 0 m higher				
than bottom level of road structure	32,1	24,2	22,6	17,7

Ditch Condition is a Problem also on Main Roads - Example of HW4

ROADEX Drainage Analysis in general showed problem sections, but more sections could have been selected, special problems were roads with recently improved drainage

Conclusions (1):

- Poor drainage is causing MAJOR problems in all ROADEX countries and better maintenance is even more important than earlier were evaluated
- New mobile laser scanner results really show the importance of good drainage maintenance
- In test road 934 > 50 % of the frost heave problem can be related to private road exit and their poorly working culverts
- Poor access road culverts cause also collapse of ditch slopes and further problems with roads

Conclusions (2):

- Verges are causing problems in all ROADEX areas and should be always removed
- Even small ponding in ditches may cause problems
- Narrow (sharp) ditches cause problems
- Sheet Ice is causing major frost heave and deformation problems in road shoulders => traffic safety issue
- Visual drainage evaluation is not enough accurate and too subjective to enforce maintenance contractors for actions

New Ideas:

- From visual inspection to objective drainage condition surveys:
 - 1. Phase GPR + Laser Scanner => target ditch bottom level
 - 2. Phase: Improvement
 - 3. Phase: MonitoringDitch Bottom Level with Laser Scanner
- Monitoring Systems for Verges
- Focus on Private Access Road Culverts:
 - Road owner need to take responsibility
- Preventing Formation of Sheet Ice:
 - Locating sheet ice sections
 - Installation of heating cables and solar panels
 - Focusing on the ditch form (wider ditch bottoms)

And Poor Drainage is Also a Traffic Safety Issue!!

