

Tyre Pressure Control

ROADEX IV final seminar Rovaniemi, 25 April 2012

Pauli Kolisoja
Tampere University of Technology

Outline of the presentation

- Basic idea of CTIS/TPCS
- Historical development
- Effect of TPC on wheel/road contact
- Principle of operation to reduce tyre wear
- Effect of TPC on road stresses
- Effect of TPC on traction/mobility
- Effect of TPC on driver's health (by Johan Granlund tomorrow)
- TPC installation statistics in some of the ROADEX countries

Basic idea of CTIS/TPCS

CTIS = Central Tyre Inflation System TPCS = Tyre Pressure Control System

Historical development

1942 US amphibious landing craft

DUKW-385 (6 × 6) 2500 kg amphibious vehicle with external airlines for tyre pressure regulation system

Historical development

- 1944 1960 widespread development and use in military applications by Soviet Union
- 1960 1970 also in many civil applications

Historical development

- Widespread adoption by US and western European militaries in 1990s;
- By 1990, 30+ types of CTI used around world
- In 1982, USFS began CTI research program; applied to various forestry vehicles
- In 1993, first two TPCS for commercial trucks

TPCS components

Munro, R. & MacCulloch, F. (2008) Tyre Pressure Control on Timber Haulage Vehicles, ROADEX III report

Material borrowed from Allan Bradley, FPInnovations FERIC, Canada

Less motion resistance in the direction on driving → better mobility of the vehicle

Material borrowed from Allan Bradley, FPInnovations FERIC, Canada

Principle in the use of TPCS

Uncontrolled tires are over-inflated for 75% of the trip

→ less tyre wear with the use of TPC

Effect of TPC on road stresses -Field trial at Stynie Woods, Scotland

Installation of the earth pressure gauges

Pressure distribution at full tyre pressure under the front wheel

Pressure distribution as a function of depth as expected.

Effect of tyre inflation pressure on road stresses

Effect of TPC on road stresses

Stresses are reduced near to the road surface but much less deeper in the subgrade \rightarrow TPC helps on Mode 1 rutting, but not on Mode 2

Calculated effect of lowered tyre pressure

Effect of TPC on traction /mobility - Filed trial at Niinisalo, Finland

Peak value before sliding of the tyre

Effect of TPC on traction/mobility Results obtained on loose / soft surface

Road surface	Highway inflation (kPa)	TPCS tire pressure (psi)	Measured tractive increase
Loose gravel*	610	210	42%
Sugar sand	690	450	34%
Wet clay	690	450	17%

^{*} Less or no tractive hop at reduced tire pressure

Uphill profile at the Nokian Tyres test site:

Tyre inflation pressures (kPa)	Climbing distanace (m)
Full pressure in all tyres	370
'Medium'/350 kPa in driving wheels	380
Low / 220 kPa in driving wheels	379 - 380

A heap of show in front of the trailer wheels in the low pressure drive.

TPC installation statistics in some of the ROADEX countries

Country	Year of the first TPCS installation	Approximate number of installations today
United Kingdom	2006	About 100
Sweden	2003	> 130
Finland	2009	>10

Questions?

